Domestication of the banana

Domestication of the banana

The domestication of the banana is the process that transformed fruits full of seeds into parthenocarpic seedless fruits that develop in the absence of pollination[1][2]. The founding events took place in the humid tropical belt that extends from India to the Solomon Islands, the natural range of wild species of bananas. The earliest archaeological evidence of domesticated bananas is from Papua New Guinea and has been dated to at least 7,000 years before present[3].

Africa is a secondary centre of diversity for at least two large groups of bananas, the Plantains and the East African highland bananas.

The ancestors

Cultivated bananas were domesticated from a small subset of wild species of bananas. The best known are Musa acuminata and Musa balbisiana since they are at the origin of the vast majority of cultivars known today. The ancestor of a group of bananas domesticated independently in the Pacific region, the Fei bananas, has not been identified.

Like human beings, wild bananas are diploid, that is their genome is comprised of two sets of gene-bearing chromosomes, only one of which is passed on during sexual reproduction.

From wild to edible diploids

The potential to produce parthenocarpic fruits has been traced to genes present in Musa acuminata[4]. Domestication for edibility most likely started with farmers transplanting the offshoots (suckers) of plants that were edible by virtue of having less seeds and more pulp. But since these plants were still fertile, they continued mating with other fertile banana plants, until sterility set in.

Sterility is believed to be due to a combination of structural and genetic factors[5]. The structural factors are linked to matings between distant relatives (different subspecies of Musa acuminata or different species, mainly Musa acuminata and Musa balbisiana), as inheriting mismatched chromosomes made it difficult for the progeny to produce fertile ovules and pollen. But scientists also believe that farmers preferentially propagating the plants that produced fruits with the least seeds might have selected for genes that contribute to sterility[5].

From that point on, further diversity was produced by farmers propagating mutant plants that exhibited desirable traits. The culmination of this process are today's diploid cultivars. Under the nomenclature system developed by Norman Simmonds and Kenneth Shepherd, these cultivars belong to the AA and AB genome groups, the letter A standing in for acuminata and B for balbisiana. Meanwhile, some of the more fertile edible diploids went on to produce triploid cultivars (see below).

From diploids to triploids

Triploid cultivars were produced when one of the diploid parents normally passed on half of its genome, while the other contributed an unreduced genome (a phenomenon called meiotic restitution). This process produced three genome groups : AAA, AAB and ABB

Triploidy made further sexual reproduction extremely unlikely, but like edible diploids, triploid cultivars continued to change through the accumulation of mutations. Cultivars that are related to each other through a series of mutations are said to form a subgroup. Two examples are the Plantains of Africa and the East African highland bananas, which have upwards of 100 cultivars each. This diversity is the result of farmers propagating mutants of the triploid ancestors introduced to the continent.


1. Perrier, X. et al. 2011. Multidisciplinary perspectives on banana (Musa spp.) domestication. PNAS, 108(28):11311-11318.
2. Perrier, X., Bakry, F., Carreel, F., Jenny, C., Horry, J.P., Lebot, V. and Hippolyte, I. 2009. Combining biological approaches to shed light on the evolution of edible bananas. Ethnobotany Research and Applications 7:199-216.
3. Denham, T.P., Haberle, S.G., Lentfer, C., Fullagar, R., Field, J., Therin, M., Porch, N. and Winsborough, B. 2003. Origins of agriculture at Kuk swamp in the highlands of New Guinea. Science 301(5630):189-193.
4. Simmonds, N.W. 1953. Segregations in some diploid bananas. Journal of Genetics 51(3):458-469.

Also on this website

Banana breeding's explorer explains how diploid cultivars are used to breed triploid bananas.

Further reading

Special issue on the history of banana domestication in Ethnobotany Research & Applications.

Contributors to this page: Anne Vézina .
Page last modified on Tuesday, 01 August 2017 11:20:21 CEST by Anne Vézina.