Un programa global para el mejoramiento de *Musa*

La segunda reunión global de PROMUSA se celebró en Douala, Camerún, inmediatamente después de la última reunión de los principales investigadores del Proyecto de Mejoramiento de Bananos (BIP) del Banco Mundial, FAO y CFC y antes del simpósio internacional "Bananos y Seguridad Alimentaria: La reunión, a la cual asistieron unos 70 investigadores, consistió de una corta sesión plenaria, seguida por reuniones de los grupos de trabajo individuales.

Desde la primera reunión global de PROMUSA, que tuvo lugar en Guadalajara en marzo de 1997, se celebraron dos reuniones de los grupos de trabajo. El grupo de trabajo en Fusarium se reunió en Tenerife, en noviembre de 1997 y el grupo de trabajo en virología celebró su reunión en Montpellier en enero de 1998 sobre el virus del rayado del banano (Banana streak virus - BSV).

Los informes de estos grupos de trabajo se publicaron en Noticias de PROMUSA (INFOMUSA: Vol. 6 No 2 y Vol. 7 No 1) y en la publicación *Banana streak virus: a unique Musa virus interaction?*.

Por lo tanto, esta segunda reunión global representó la primera oportunidad para el encuentro de los grupos de trabajo en mejoramiento genético y en nematología, desde que se inició el programa. Los miembros del grupo de trabajo en Fusarium, que ya han celebrado una reunión, decidieron no reunirse esta vez.

Las reuniones de los grupos de trabajo consistieron principalmente de discusiones informales, mientras que las presentaciones formales sobre los trabajos en curso, se mantuvieron al mínimo. Cada grupo se enfocó en la revisión de las prioridades, establecidas en Guadalajara, y en la identificación de los planes de trabajo y oportunidades de colaboración en los años venideros. En adición a las discusiones de los grupos individuales, se dedicó algún tiempo a las interacciones entre los grupos, lo que fue considerado particularly útil.

Se puede ver, de los informes presentados la semana, que cada grupo de trabajo está desarrollando su propia y única vía de operación y que están siendo desarrolladas varias estrategias. Por ejemplo, el grupo de trabajo en nematología está enfocado sobre la información: deseando reunir y hacer accesible toda la información disponible, mientras que el grupo de virología está más preocupado en compartir a carga de trabajo y las responsabilidades entre los miembros, evitando la duplicación de esfuerzos de los investigadores.

Durante esta segunda reunión, los participantes en PROMUSA demostraron un creciente entendimiento del programa y una apreciación de los beneficios que se obtendrían a través de la colaboración mejora el intercambio de información, promovida por PROMUSA. El apoyo al programa fue expresado claramente y animadamente, además de que nuevas y variadas iniciativas de colaboración surgieron de la reunión.

Esta segunda reunión global también proporcionó una oportunidad para que el Comité directivo de PROMUSA se reuniera por primera vez. Este Comité lo componen los representantes de los sistemas nacionales de investigación agrícola (SNA), los institutos de investigación avanzada (ARI) y los centros internacionales de investigación agrícola (IARC) y es responsable por las directrices y la supervisión del programa. El informe de la reunión se presenta a continuación.

Informe de la reunión del Comité Directivo de PROMUSA, celebrada en Douala, Camerún, del 6 al 10 de noviembre de 1998

Presentes:
- A.C. Mbitware en representación de los SNA de África Oriental y del Sur
- R. Pérez Duvergier en representación de los SNA de América Latina y el Caribe
- J.C. Norman en representación de los SNA de África Occidental y Central – (sólo el 10 de noviembre)
- L. Sejourna en representación de los ARI de Norteamérica
- J. Stanton en representación de los ARI de Australia y el Pacífico – (en reemplazo de E. Atikem)

Ausentes con disculpas:
- Ph. Lepelvre en representación de los ARI de Europa
- D. Vuyksteek en representación del IITA
- E. Friis en representación del IPGRI
- L. Sas observador (Presidente del Grupo de Apoyo a PROMUSA)
- G. Orjeda observador (Coordinadora de PROMUSA)
- S. Sharrock secretario
Modus Operandi y estructura del Comité Directivo

Composición: La estructura actual del Comité Directivo, cuya base la componen los principales participes del sistema agrícola mundial, fue considerada adecuada. También se acordó que, al ser elegidos los representantes por los correspondientes cuerpos regionales, los organismos concernientes han sido consultados apropiadamente.

Términos de duración: Se acordó que el término de duración de un miembro del Comité Directivo sería de un año, renovable hasta un máximo de seis años. El término de duración del Presidente sería de un año, renovable hasta tres años.

Frecuencia de las reuniones: Los miembros del Comité Directivo acordaron que idealmente ellos deberían celebrar reuniones una vez al año, combinadas con la reunión de al menos un grupo de trabajo. Sin embargo, la programación de las reuniones dependerá de la disponibilidad de fondos y se requiere de un enfoque pragmático.

Quórum: El Comité Directivo se compone de nueve miembros y dos observadores. Por lo tanto el quórum se logra con la participación de cinco miembros.

Papel del Comité Directivo

Se acordó que el papel del Comité Directivo considerará en proporcionar vigilancia y dirección a PROMUSA. El Comité Directivo también será responsable por el establecimiento de las prioridades del programa, basándose en consejos técnicos proporcionados por los grupos de trabajo. El Comité Directivo aprobará la estrategia del programa y el plan a mediano plazo y desarrollará estrategias con el fin de obtener apoyo financiero para el programa. También deberá autorizar revisiones externas del programa, abogar por él y buscar consejos técnicos apropiados.

Papel del Presidente del Comité Directivo de PROMUSA

El papel del Presidente del Comité Directivo consistirá en convocar las reuniones del Comité, establecer el orden del día y presidir la reunión. En adición, el Presidente colaborará estrechamente con el Secretariado de PROMUSA con respecto a los contactos con los donantes, grupos de trabajo y otras partes interesadas. Se acordó que no existe la necesidad de nombrar un vicesecretario. Si por cualquier razón el Presidente no puede cumplir con sus deberes, el Comité designará a un Presidente temporal.

Elección del Presidente de PROMUSA

El Dr. Emile Frison fue elegido Presidente para el período de 1993/95.

Papel del Secretariado de PROMUSA

El Comité Directivo acordó que el Secretariado de PROMUSA será responsable por mantener registros, actas e informes, relacionados con el programa. También organizará y convocará las reuniones de los grupos de trabajo y del Comité Directivo y asegurará el flujo de información entre los miembros de los grupos de trabajo. El Secretariado mantendrá contacto con los grupos de trabajo, asegurando su eficaz operación y vigilará el progreso del programa. El Secretariado también proporcionará un enlace entre los grupos de trabajo y el Comité Directivo e informará al Comité Directivo cada seis meses sobre el progreso del programa. El informe del Secretariado incluirá un reporte financiero sobre los gastos del Secretariado y costos de operación del programa. Se subrayó la necesidad de transparencia en todos los asuntos financieros. El Secretariado solicitará la orientación por parte del Comité Directivo con respecto a la distribución de los fondos dentro del programa e inclusión de los proyectos con fecha límite en PROMUSA.

Grupos de trabajo temáticos

Participación: El Comité Directivo recomendó que los grupos de trabajo sean abiertos a todas las partes interesantes para fomentar el intercambio de nuevas ideas e intereses dentro de ellos. Sin embargo, también se reconoció que los costos de realizar las reuniones para todos los miembros de los grandes grupos de trabajo serían insosteniblemente altos. Por lo tanto, se recomienda que los grupos de trabajo deban tener dos niveles de participación. Un amplio "grupo de discusiones" incluiría a todos los miembros del grupo, quienes participarían en el intercambio de puntos de vista e información esencialmente por correo electrónico. El segundo nivel de participación sería el "grupo central" que uniría a los miembros que trabajan específicamente en las investigaciones prioritarias identificadas por el grupo y desean y son capaces de participar en proyectos de colaboración y en el desarrollo de nuevas propuestas. Adicionalmente, se recomienda que el grupo central deba incluir una representación apropiada del norte y del sur y de una máxima cantidad de instituciones. Los miembros del grupo central participarán en las reuniones de los grupos de trabajo, aunque otros miembros también podrían participar con sus medios propios. También se recomendó que la membresía de los grupos de trabajo, tanto a nivel del grupo de discusiones como del grupo central, cambiaría con el tiempo a medida que las prioridades de los grupos de trabajo

Frecuencia de las reuniones de los grupos de trabajo: Se acordó que los grupos de trabajo determinarán sus necesidades de sus reuniones, lo que también dependería de la disponibilidad de financiamiento.

Centrado en la orientación de los grupos de trabajo: Se reconoció que la cantidad y la orientación de los grupos de trabajo, existentes dentro de PROMUSA, es flexibles y que podrían surgir nuevos grupos y otros desaparecer, dependiendo del progreso del programa.

Campo global y prioridades de PROMUSA

La orientación de PROMUSA es sobre el mejoramiento genético de Musa y hubo un consenso entre los miembros del Comité Directivo de que esta orientación es la apropiada y no debería ser cambiada. Otras investigaciones, que forman parte del programa, deben apoyar los esfuerzos en el mejoramiento, lo que debe ser revisado regularmente.

Estrategia y plan a mediano plazo

El Comité Directivo aprobó la estrategia y el plan a mediano plazo, descritos en las memorias de la reunión de PROMUSA celebrada en Guadalupe en 1997. Se acordó que se recuerden algunas decisiones minimas y que la actualización del documento de PROMUSA, y que estos se reflejaran en una página de PROMUSA en Internet.

Estrategias para la movilización de los recursos

Los miembros del Comité Directivo reconocieron el apoyo proporcionado a PROMUSA por el Gobierno australiano y fueron informados de que un compromiso adquirido por la Unión Europea (UE) no se ha materializado todavía debido a las reestructuraciones y cambios del personal dentro de la UE. Sin embargo, se espera que la contribución de la UE llegará en 1999. El Comité Directivo señaló las dificultades de asegurar fondos para el programa, particularmente para cubrir los gastos de operación. Por lo tanto, se recomienda que todas las propuestas de proyectos, preparadas en el marco de PROMUSA, incluyan un presupuesto para los gastos de operación de PROMUSA.

Se realizó una discusión general sobre las fuentes de financiamiento, incluyendo a los donantes tradicionales, bancos de desarrollo y fundaciones. Se reconoció que algunos de los donantes pueden estar dispuestos a financiar reuniones y no proyectos de investigación, y el Secretariado debe estar atento a estas posibilidades. También se acordó que todos los miembros del Comité Directivo deberían seguir con sus contactos personales con las agencias donantes y hacer todo tipo de esfuerzos para identificar nuevas fuentes de financiamiento para el programa.

En relación con el sector privado, se consideró que podrían existir posibilidades de colaboración, como investigaciones comunes en áreas específicas. Los miembros del Comité deben ser más activos, explicando claramente las necesidades de las investigaciones y los beneficios que el sector privado puede obtener de este tipo de colaboración. En relación al acceso a las tecnologías patentadas, el Presidente sugirió la necesidad de investigar estrategias como el uso de "derechos filantrópicos".

También se señaló que el uso del Acuerdo de Adquisición de Germoplasma (Germplasm Acquisition Agreement), desarrollado por INIBAP, puede ayudar en la distribución del germoplasma mejorado a través de diversos programas de mejoramiento.

Uso del 'label' PROMUSA

El Comité Directivo acordó que sólo los proyectos reconocidos y acordados por los grupos de trabajo deben llevar el 'label' que los distingue como los ejecutados en el marco de PROMUSA. Por lo tanto, los grupos de trabajo deberían informar al Secretariado antes de someter las
propuestas de proyectos para el financiamiento. Donde es posible, estos proyectos deberían incluir un componente de presupuesto para los gastos de operación de PROMUSA.

Progreso de PROMUSA

Los miembros del Comité Directivo, después de haber tenido la oportunidad de participar en las reuniones de dos días de los grupos de trabajo, informaron favorablemente sobre el progreso de los grupos de trabajo. Ellos estuvieron de acuerdo que la energía y el espíritu de colaboración manifestados en Guadalupe seguían intactos y que los participantes se convirtieron en un grupo unido de investigadores. El Comité Directivo fue complacido al señalar algunos puntos específicos, como lo son:

- colocación y distribución de las tareas entre los diferentes miembros del grupo de trabajo en virología, lo que aumentaría la eficiencia y rápido progreso en esta disciplina;
- formación de dos subgrupos dentro del grupo de mejoramiento genético (genética molecular y criogenética). Estos subgrupos trabajarán juntos para desarrollar proyectos colaborativos;
- la idea del grupo de nematología de reunir toda la información disponible en ciertas áreas y evitarla como publicaciones de PROMUSA;
- las estrictas relaciones entre los grupos de Sigatoka y de mejoramiento genético. El Comité Directivo señaló que las reuniones de los grupos de trabajo de PROMUSA proporcionan una importante oportunidad no sólo para el intercambio de información dentro de cada grupo, sino también entre los distintos grupos. Esta interacción entre los grupos es muy importante, y se señaló la necesidad de dar suficiente tiempo para que este hecho se tome en consideración en la organización de las futuras reuniones.

Apoyo especial a la FHIA

El Comité Directivo subrayó el importante papel que desempeña la FHIA en el mejoramiento de bananas y expresó su profunda preocupación por los daños infligidos a la estación por el reciente huracán Mitch. Se recomendó que la FHIA sea contactada lo más pronto posible y se solicitaron medidas para rehabilitar el programa de mejoramiento. PROMUSA sería responsable de identificar y dirigir el apoyo de emergencia a la FHIA.

Siguiente reunión del Comité Directivo

Se acordó que la siguiente reunión mundial de PROMUSA se celebraría en la primera mitad del año 2000. Por lo tanto, el Comité Directivo se reunirá en estas fechas.

Reunión del grupo de trabajo sobre Mejoramiento genético de PROMUSA – Desarrollo de estrategias de colaboración

Presidentes: Jean-Vincent Escalante; Dirk Vuylsteke

Facilidades para la interacción y evaluación de los principales tópicos

Puesto que el Grupo de trabajo sobre Mejoramiento genético es el corazón de PROMUSA, su enfoque se centra en la revisión de los principales problemas concernientes a la interacción con otros grupos de trabajo.

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Disponibilidad</th>
<th>Lagunas en investigación</th>
</tr>
</thead>
</table>
| Recursos genéticos | Sí | Se necesita mayor cantidad de nuevas fuentes de resistencia (las actuales son muy reducidas).
| | | Otras fuentes de resistencia (por ejemplo, resistencia a taninos utilizados en otras especies que no casan Musa) |
| | | Estudios de la diversidad genética |
| | | Mecanismos de resistencia |
| | | Disponibilidad de resistencia |
| Programas de mejoramiento | Sí | Algunos programas de mejoramiento para las especies Musa están progresando, pero aún se necesita realizar mucho trabajo en áreas como Asia y el Pacífico y en el subsiguiente de India (poco investigado) |
| Híbridos disponibles | Sí | Se necesita mayor cantidad de híbridos. Ejemplo: “Cancheda” no resistente – la base genética es muy estrecha (poco conocida: Asia y el Pacífico) |
| Etapa temprana de evaluación | Sí | Se necesitan híbridos tempranos (mientras más temprano se realice el temprano, es mejor), debe reducir marcadores moleculares |
| Etapa de evaluación en localidades múltiples y a nivel de agricultores | Sí | Intervención insuficiente con acceso a ONG, agricultores, servicios de extensión |
| Etapa de evaluación global | Sí | Se requieren políticas respecto al BSV |
| Disponibilidad de los métodos de control existentes | Sí | Problema de adaptación y adopción |

Nemátodos y Fusarium. Para cada tema se consideraron cuatro aspectos importantes:

- Recursos genéticos
- Programas de mejoramiento
- Disponibilidad de híbridos en diferentes etapas de evaluación (temporada, de localidades múltiples, a nivel de agricultores y global)

- Métodos sostenibles de control disponibles.

Para cada tema, el grupo analizó las dificultades en investigación e identificó tecnologías disponibles y, sobre esta base, estableció prioridades de investigaciones.

Los siguientes tópicos y preguntas fueron dirigidos al grupo de trabajo sobre las enfermedades de Sigatoka:

- El Grupo de Mejoramiento genético necesita su asistencia en las siguientes áreas:
 a) Evaluación de nuevas fuentes de resistencia,
 b) Consulta y revisión de los datos genéticos actuales,
 c) Identificación de nuevas fuentes de resistencia,
 d) Diseño y desarrollo de híbridos tempranos.

G: Global significa que el germoplasma es indicado como virus y se puede ser distribuido para la evaluación a nivel global.
Nematodos

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Disponibilidad</th>
<th>Lagunas en investigación</th>
<th>Nivel de prioridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos genéticos</td>
<td>SI</td>
<td>Se necesita una mayor cantidad de nuevos fuerzas de resistencia</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validez y poder patógeno de los nematodos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Se necesitan métodos de tamizaje más fáciles que se realicen en una etapa más temprana</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mecanismos de resistencia genética</td>
<td>1</td>
</tr>
<tr>
<td>Programas de mejoramiento</td>
<td>SI</td>
<td>Todos los programas y reservas genéticas – Fuentes de resistencia – M étodos de evaluación</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validez y poder patógeno de los nematodos</td>
<td></td>
</tr>
<tr>
<td>Híbridos disponibles</td>
<td>SI</td>
<td>Evaluación más amplia contra los complejos de nematodos</td>
<td>2</td>
</tr>
<tr>
<td>Etapa de evaluación temprana</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etapa de evaluación en localidades múltiples y a nivel de agricultores</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etapa de evaluación global</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disponibilidad de los métodos de control sostenibles</td>
<td>SI</td>
<td>Control biológico – Problemas de adaptación y adopción</td>
<td>2</td>
</tr>
</tbody>
</table>

1 = Alta; 2 = Media; 3 = Baja

Tópicos y preguntas que deben ser discutidos dentro del grupo de Nematología:

- Los mejoradores necesitan mayor cantidad de fuerzas de resistencia y mejores herramientas para la evaluación,
- Mayor conocimiento de la variabilidad y del valor patógeno de los nematodos,
- Se necesita asistencia para desarrollar métodos normalizados de tamizaje en las etapas más tempranas y que estos sean más fáciles.

Virología

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Disponibilidad</th>
<th>Lagunas en investigación</th>
<th>Nivel de prioridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos genéticos</td>
<td>No</td>
<td>Métodos de tamizaje de resistencia, identificar fuerzas de resistencia</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programas de mejoramiento</td>
<td>SI</td>
<td>Mejoramiento convencional</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(inmunización no convencional es el tópico principal)</td>
<td></td>
</tr>
<tr>
<td>Híbridos disponibles</td>
<td>Ne</td>
<td>Métodos de tamizaje de resistencia, identificar fuerzas de resistencia</td>
<td>1</td>
</tr>
<tr>
<td>Etapa de evaluación temprana</td>
<td>No (sólo resistencia del BIBTV transgresor)</td>
<td>Irrelevante</td>
<td></td>
</tr>
<tr>
<td>Metodología de control disponibles</td>
<td>SI</td>
<td>Sólo cuestiones y prácticas culturales sanitarias</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temas – Evaluación y adopción más amplios</td>
<td>2</td>
</tr>
</tbody>
</table>

1 = Alta; 2 = Media; 3 = Baja

Tópicos y preguntas dirigidos al grupo de trabajo en Virología:

- Se necesita desarrollar herramientas para realizar la evaluación,
- Definir y caracterizar la respuesta de la planta,
- ¿Cómo evaluar la resistencia?
- ¿Qué es resistencia y cuáles son sus componentes?
- Se necesita desarrollar métodos de tamizaje,
- Se necesita desarrollar procedimientos terapéuticos.

Marchitamiento por Fusarium

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Disponibilidad</th>
<th>Lagunas en investigación</th>
<th>Nivel de prioridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursos genéticos</td>
<td>SI</td>
<td>Fuerzas de resistencia a la raza 4 y otras razas</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mejores métodos de tamizaje y en las etapas más tempranas</td>
<td></td>
</tr>
<tr>
<td>Programas de mejoramiento</td>
<td>SI</td>
<td>Mejoramiento de los bananos en Asia</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mecanismos genéticos y de resistencia</td>
<td></td>
</tr>
<tr>
<td>Híbridos disponibles</td>
<td>SI</td>
<td>Resistenza a la raza 4</td>
<td>2</td>
</tr>
<tr>
<td>Etapa de evaluación temprana</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etapa de evaluación en localidades múltiples y a nivel de agricultores</td>
<td>SI (poco muy pocos disponibles)</td>
<td>Insuficiente cantidad de híbridos</td>
<td>2</td>
</tr>
<tr>
<td>Etapa de evaluación global</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Métodos de control disponibles</td>
<td>SI</td>
<td>Control biológico</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(sólo cultivo anual en sistemas de incepción)</td>
<td></td>
</tr>
</tbody>
</table>

1 = Alta; 2 = Media; 3 = Baja

Trabajo en colaboración

Durante la reunión se identificaron dos iniciativas para trabajo en colaboración. La primera consiste en el establecimiento de una red de cartografía de Musa y la segunda, en el establecimiento de una red de construcción de mapas genéticos para obtener un mapa saturado de Musa. Un tercer tópico discutido en el marco de las actividades de colaboración era el mejoramiento mediante mutación inducida.

Propuesta de colaboración en carioología

Informe de: Jaroslav Doležel y Frédéric Bakry

Coordinador: Fredéric Bakry

A la reunión asistieron los siguientes investigadores:

- F. Bakry (CIRAD, Francia)
- F. Carreel (CIRAD, Francia)
- J. Doležel (Institute of Experimental Botany, República Checa)
- J. P. Horv (INIBAP, Francia)
- C. Jenny (CIRAD, Guadalajara)
- D. Kaemmer (Univ. de Frankfurt, Alemania)
- M. Pillay (IITA, Nigeria)
- N. Roux (IAEA, Austria)

El grupo de científicos se reunió para discutir los tópicos actuales relacionados con la carioología de Musa. Se acordó que existe una creciente brecha entre el conocimiento del genoma a nivel molecular y a nivel cromosómico. Mientras que recientemente hubo un progreso rápido en la construcción de mapas genéticos, en el campo de la carioología de Musa...
se hizo un trabajo muy limitado afuera de pocas excepciones. Este retraso puede impedir el progreso en muchas áreas de investigación de Musa desde la taxonomía y estudios evolutivos hasta el mejoramiento de cultivares mejorados.

El grupo identificó las siguientes prioridades de investigación en el campo de la citogenética de Musa:

Determinación de niveles de ploidía
Para muchas acciones (incluyendo aquellas que se mantienen en el Centro de Tránsito de INIBAP en la KUL, Bélgica), la determinación de la ploidía no ha sido realizada con la utilización de métodos confiables de conteo de cromosomas y/o citometría de flujo de ADN. Existe una urgente necesidad de tanzar estas acciones. Se discutió la posibilidad de identificar los laboratorios que pueden proporcionar este servicio.

Caracterización del cariotipo
En los bananas silvestres y cultivados, el conocimiento de la estructura cromosómica de Musa es muy limitado. Recientemente, aparecieron nuevos métodos para estudiar cromosomas a alta resolución. Estos métodos deben ser utilizados para caracterizar los cromosomas de Musa, incluyendo la clasificación de tipos de cromosomas individuales e identificación de diferencias entre los cariotipos de especies individuales, subespecies y cultivares.

Estimación del tamaño del genoma nuclear de las accesiones de Musa utilizando la citometría de flujo
Se demostró que la citometría de flujo es una herramienta muy útil para determinar el tamaño del genoma de Musa. La técnica tiene capacidad para estimar la constitución genómica. Se espera que la técnica será utilizada en una escala mayor. Para permitir la comparación de los resultados obtenidos en diferentes laboratorios, es necesario llegar a un acuerdo sobre el uso de los estándares en el área de ADN.

Construcción de los mapas cromosómicos físicos
Existe una urgente necesidad de construir mapas cromosómicos físicos de Musa. Su combinación con los mapas genéticos, dará como resultado mapas integrados que se convertirán en herramientas indispensables para el estudio de la estructura del genoma y el funcionamiento de los genes de interés. Un paso esencial en el desarrollo de estos mapas integrados es la acumulación de cantidades suficientes de marcadores moleculares y citogenéticos.

Desarrollo de nuevos procedimientos para el análisis de los cromosomas de Musa
El progreso reciente en el área de la citogenética vegetal fue estimulado por el desarrollo de nuevos métodos y procedimientos. Estos métodos, que incluyen la localización de secuencias bajas y de copias únicas utilizando FISH, FISH de fibras o PRINS, y el colorado de cromosomas, tienen que ser desarrollados o modificados para su uso con Musa.

Transferencia de tecnología
Existe una necesidad para producir una publicación que resuma protocolos actuales para la citogenética de Musa, incluyendo la citometría de flujo y citogenética molecular (INIBAP?). Miembros del grupo desean organizar capacitación y becas para investigadores jóvenes. Si se consiguen suficientes fondos, el grupo puede organizar talleres y cursos de capacitación sobre la citogenética de Musa.

Literatura
Se publicaron muchos trabajos sobre la citogenética de Musa en revistas especializadas y, por lo tanto, esta información no es accesible con facilidad. Es muy deseable el establecimiento de una base de datos especializada de literatura sobre la citogenética de Musa (INIBAP?). La base de datos debe actualizarse regularmente y estar disponible a través de Internet.

Interacción entre los investigadores
Hasta hace poco, esta interacción fue muy limitada. Para estimular el intercambio de información, se acordó establecer una plataforma o un club de discusión en Internet. El Dr. F. Bakry propuso que se organice el club con una dirección tentativa: promusa.cytogenetics@inibap.fr. Se debe considerar la posibilidad de compartir esta plataforma con los investigadores involucrados en la construcción de mapas genéticos.

Conclusión
El grupo propuso a invitación científicos reconocidos y pioneros en la citogenética de Musa que se unan al grupo. Los miembros del grupo acordaron colaborar para promover el desarrollo de la citogenética de Musa.

El Dr. F. Bakry convino en actuar como coordinador del grupo.

Hacia un mapa genético saturado de banana para asistir a los programas de mejoramiento: desarrollo de marcadores SSR
Informe de: Françoise Carreel y Dieter Kaemmer
- A la reunión asistieron cuatro investigadores:
 - Peter Salmi Kurt (BTI, EEUU)
 - Michael Pillay (IITA, Nigeria)
 - Nicolas Roux (IAEA, Austria)
 - Kodjo Torneke (CRBP, Camerún)
Personas que no estaban presentes, pero que desean participar en el trabajo de colaboración:
 - Elizabeth Aiken (QDPI, Australia)
 - Jaroslav Doltoel (Institute of Experimental Botany, República Checa)
 - O. B. Hernang (CRI, Ghana)
 - Jean-Pierre Horry (INIBAP, Francia)
 - Gisella Orjue (INIBAP, Francia)
 - Rory Swennen (KUL, Bélgica)
El grupo también está abierto a otros investigadores que deseen contribuir.

Mapas genéticos
Se desarrollaron diferentes mapas genéticos de Musa (Faure et al. 1994, Lagoda et al. 1998), utilizando marcadores codominantes (RFLP, isozimas, STMS) y muchos marcadores dominantes (RAPD y AFLP). Los marcadores codominantes siempre detectan el mismo locus en diferentes cruzamientos bajo investigación. Actualmente, no existen anclas para identificar grupos de enlace, ellos pueden ser utilizados para establecer los mapas principales. Por otro lado, los marcadores más dominantes son específicos de cruzamientos, pero ya que su desarrollo y uso requieren de menor cantidad de tiempo que los de los marcadores codominantes, ellos a menudo se utilizan para saturar los mapas. Sólo aquellos marcadores codominantes que siempre están ligados al mismo grupo de enlace en diferentes cruzamientos, son considerados útiles y confiables para comparar los resultados de los mapas construidos a partir de diferentes cruzamientos.

El grupo acordó que al mapa genético del banano le faltan marcadores codominantes, de loci específicos y polimorfos que se transfieran con facilidad a todos los laboratorios. Los miembros del grupo acordaron colaborar con el fin de promover el desarrollo de un mapa genético saturado de Musa que será útil para:
- llegar a un entendimiento verdadero de la base genética de la herencia de caracteres
agronómico y de resistencia, a pesar de la segregación distorsionada, que se observa con frecuencia en bananos, debida parcialmente a translocaciones,

- localizar los principales genes involucrados en los marcadores agronómicos y de resistencia de interés con el fin de utilizarlos en la selección con la ayuda de marcadores (MAS) y últimamente para aislarte y usarlos en transformación,

- localizar el punto de ruptura de translocaciones para aumentar la eficacia de las estrategias de mejoramiento basadas en MAS.

Poblaciones de segregación

Existe una iniciativa sobre la conferencia de mapas que está siendo desarrollada por INIBAP, pero el ADN de estas poblaciones puede no estar disponible antes del año 2000. El CIRAD, el CRBP y el ITA han obtenido diferentes poblaciones de segregación de acuerdo a sus objetivos de mejoramiento. Dentro del proyecto BIP Field Crosses for Understanding the Inheritance of Black Leaf Streak Resistance in Bananas (‘Cruzamientos en campo para comprender la herencia de la resistencia a la Sábila negra en bananos’), el CRBP ha desarrollado una población F2 a partir de un cruzamiento entre el F. a. humbirdnocides ‘Calculta 4’ y M. a. banksi Madang llamada la población AFCAM20. El grupo discutió la posibilidad de utilizar esta población para la iniciativa actual.

La población AFCAM20 tiene 175 híbridos caracterizados por 20 marcadores STMS, 20 marcadores AFLP y 200 marcadores AFLP. Esta población también puede ser aumentada hasta 500 híbridos en el CRBP. Las siguientes son las actividades necesarias:

- Autofecundación del F1 CAM20 y crecimiento de los híbridos,

- Extracción de ADN en grandes cantidades, primero a partir de ocho individuos para evaluar la calidad y el polimorfismo de los marcadores desarrollados. Estos individuos son los progenitores de la población de segregación diferente ‘Calculta 4’ - Madang - F1 CAM20 - Gupod - Pisang Jari Busaya - Malacensis - Pisang Lili - M. balbisiana (a determinar),

- Extracción de ADN en grandes cantidades de la población de segregación F2: hasta 500 individuos, a discutir.

Marcadores

El grupo acordó sobre la conveniencia de saturar el mapa con los marcadores STMS (Sequence Tagged Microsatellite Site – Sitio de microsatélites de secuencias etiquetadas). Los marcadores STMS son específicos de los loci, codominantes y altamente polimórficos que pueden ser analizados mediante la electroforesis en gel de urea-policrilamida no radiactiva, un sencillo método transferible, menos costoso que la mayoría de las otras técnicas moleculares. La desventaja de este método consiste en que el desarrollo de los marcadores STMS ocupa mucho tiempo y es costoso. Por esta razón, los diferentes laboratorios institucionales convienen en asociar su capacidad y facilidades técnicas para que el desarrollo de estos marcadores sea menos costoso.

Pasos que se compartirán entre diferentes laboratorios:

- Identificación de todos los marcadores STMS disponibles en diferentes laboratorios; marcadores STMS ya definidos y examinados o marcadores STMS potenciales a través de sondas de secuencia,

- Construcción de una biblioteca de ADN enriquecida con los marcadores STMS,

- Secuenciación de las sondas,

- Definición de los iniciadores,

- Examen de la calidad y polimorfismo de los marcadores STMS en los clones mencionados arriba,

- Caracterización de la progenie con los marcadores STMS escogidos,

- Construcción de mapas.

El grupo acordó que los resultados de la definición de los marcadores STMS y su uso en la construcción de los mapas se pondrán a disposición y se hará una publicación conjunta. Interacción entre los investigadores: como en el grupo sobre cariología, con el fin de estimular el intercambio, se acordó establecer una plataforma o un club de discusión en Internet.

Independientemente de los objetivos de los programas de mejoramiento, los marcadores moleculares desarrollados y los mapas construidos ampliarán las estrategias de mejoramiento a través de una selección rápida de progenitores e híbridos.

Biodiversidad inducida

Se discutieron ampliamente las metodologías de inducción de mutaciones como una vía adicional para ayudar a los programas de mejoramiento.

Uso de mutaciones inducidas en conjunto con los programas de cruzamientos

a) El tratamiento mutagénico podría ser aplicado en dos niveles:

- Para mejorar las líneas parentales (tipos diploides silvestres o diploides mejorados),

- Para mejorar el producto final (triploides o híbridos triploides).

Los miembros del grupo de mejoramiento genético discutieron respecto al nivel en el cual el tratamiento mutagénico debería ser utilizado.

b) Las principales características a mejorar:

- Las características agronómicas mejoradas como el enanismo y la precocidad podrían ser obtenidos a corto plazo. Los caracteres de resistencia a las enfermedades deben ser considerados en términos más largos, ya que ellos son principalmente de origen mutagénico y todavía se necesita desarrollar métodos de tamizado sencillos y rápidos para examinar estos caracteres.

Uso de mutaciones inducidas en ‘estudios genómicos’ estructurales y funcionales

El grupo de mejoramiento genético de PROMUSA expresó la importancia de crear un mapa genético saturado. Los mutantes, líneas isogénicas, líneas haploides dobladas, cepas de detección y bancos genéticos son de inmensa utilidad ya que permiten conectar las secuencias de ADN con sus funciones biológicas reveladas por los fenotipos mutantes. Con todo, es importante utilizar varios enfoques en caracterización y aislamiento de los genes para el mejoramiento de Musa. La información que incorpora las mutaciones con los fenotipos debe unirse a los esfuerzos en la construcción de mapas genéticos.

Se le recordó al grupo que el Laboratorio de Agricultura y Bioinformática de FAO/JAIAE puede irradiar material gratuitamente para sus estados miembros.

Recomendaciones

La ausencia de un programa de mejoramiento genético de Musa en Asia, la región del origen de falso, se reconoció como una seria lagar. Todas las iniciativas locales en este sentido enfocadas sobre los recursos genéticos y su mejoramiento, deben ser apoyados enérgicamente. El programa de INIBAP-ASPNET podría coordinar estas iniciativas. La iniciativa asiática podría ser fortalecida con el intercambio de material, información y germoplasma.

El grupo de mejoramiento genético de PROMUSA recomienda enérgicamente al secretariado de PROMUSA contactar la FAO para abrir una discusión (para estudios en campo) sobre las implicaciones de la evaluación y liberación de los bananos transgénicos.

El grupo de trabajo recomienda la proporción de nuevas Musa balbisiana (diploide BB silvestre) en Filipinas e India. El grupo también recomienda la prospección de otras Musa acumínata, principalmente en India, pero Filipinas y Malasia también deben ser considerados.

El grupo de mejoramiento genético identificado como prioritario la necesidad de que los mejoradores tengan un mejor acceso a las colecciones existentes de Musa con el fin de aumentar la disponibilidad de germoplasma natural y mejorado (diploides y triploides). Se recomienda que las bases de datos MGIS e IMPF sean utilizadas para mejorar la accesibilidad a la información. En adición, se señaló que la información sobre el germoplasma del ITA puede ser obtenida a través de su informe anual y otras publicaciones.

Respecto a las diploides mejoradas, el Dr. Sathiamoorthy indicó que 18 diploides mejorados con resistencia a enfermedades están disponibles en la TNAU, y el ITA ya ha donado diploides mejorados al IMPF para ser evaluados por los programas de mejoramiento. Sabiendo que el intercambio de información y germoplasma podría ser problemático en relación con los derechos sobre la propiedad intelectual, se recomendó que los diploides mejorados de Musa podrían ser intercambiados bajo acuerdos bilaterales específicos.

Se señaló que el IMPF ha sido ampliado para incluir el material diploide disponible para el mejoramiento. Se recomendó que la iniciativa sobre un catálogo del IMPF debe ser impulsada y que los programas de mejoramiento deben proporcionar información sobre los híbridos mejorados y diploides para mejoramiento, que ellos ponen a disposición del IMPF.

Se recomendo que toda la información concerniente a los híbridos, material de mejoramiento y especies indígenas debe estar disponible en un sitio de Internet, así como en una publicación, con el fin de facilitar el acceso para todos. Esto debería ser responsabilidad de INIBAP.
Reunión del grupo de trabajo en Nematología de PROMUSA

Participants
La segunda reunión del grupo de trabajo en Nematología de PROMUSA se celebró en Douala, Camerún, del 8 al 10 de noviembre de 1998. A la reunión asistieron los siguientes nematólogos de Musa (en orden alfabético): la Dra Inge van den Bergh (VASI, Vietnam); Dr Roger Fogal (CRBP, Camerún); Dr Simon Gowen (Universidad de Reading, Reino Unido); Dra Imelda Kasharia (NARO, Uganda); Dr Nigel Price (CABI, anteriormente MoA, Mauricio, Presidente); Dr Jean-Louis Sarah (CIRAD, Francia); Dr Paul Speijer (ITA, Uganda); Dr Julie Stanton (CDPI, Australia) y el Dr Dirk de Waele (KUL, Bélgica). Además, el Dr Soonanathu Sudaram de la Tamil Nadu Agricultural University (TNAU, India) participó en algunas discusiones y la Sra Suzanne Sherrock de INIBAP se desempeñó como secretaria.

La agenda de la reunión, propuesta por PROMUSA, fue previamente distribuida a los participantes. Además, en la mañana del 10 de noviembre se celebró una reunión con los representantes del Grupo de Mejoramiento Genético de PROMUSA.

Estatus de la nematología de Musa
Los investigadores presentaron resúmenes de las actividades que se llevan a cabo en sus instituciones respectivas en el área de nematología de Musa (si estas fueron ampliadas o no presentadas en la reunión del BIP, que se celebró previamente). Se señaló que el comienzo de las actividades en Vietnam, a través del enlace VVOS/INIBAP y la participación de un representante de la TNAU, y la reunión de una dimensión asiática. También se indicó que el ACIA, a través de un proyecto próximo a ejecutarse con el CDPI, financiará la investigación en nematología en ultramar (en particular en Mozambique, África del Sur y Tailandia).

Respecto a la prioridades y estrategias generales del grupo de trabajo, no se tuvo que alterar los objetivos establecidos en Guadalajara en 1997. No obstante, en relación con la información desplegada en la página Web de PROMUSA, se señalaron algunos cambios institucionales. Con respecto a las investigaciones, se acordó que la necesidad de nuevas exploraciones de gromplasma de Musa era de mayor prioridad.

Se discutió la escasez de científicos que trabajan en nematología a nivel mundial. Se reconocció que el esquema flamenco VVOS es muy útil en cuanto a colocar a los jóvenes nematólogos en los trópicos, pero que también tiene sus limitaciones ya que la cantidad de posiciones está congelada y el 50% de ellos deben trabajar en África sub-Sahariana. Se discutió la posibilidad de incrementar los intercambios de estudiantes entre las organizaciones y que se descubren varios mecanismos existentes para hacerlo. Se acordó que las becas a corto plazo no son una vía eficaz para conducir investigaciones y que sería mejor establecer colaboraciones de tipo postgrado o postdoctorado a largo plazo.

Además, se señaló que el programa de maestría en la KUL para los estudiantes de los países en vías de desarrollo es crucializado en el campo de la nematología de Musa.

Necesidades de investigación en nematología de Musa
Una propuesta para aumentar el "Consejo de los Nematólogos de Musa" fue presentada por Dirk de Waele. El Consejo propuesto se enfocará en los experimentos y ensayos de tanatizado y evaluación, y se identificó una lista preliminar de los potenciales socios. Se acordó que esta actividad se desarrollaría como un proyecto global de tipo "modular" con diversos componentes y fuentes de financiamiento, que serían tratados independientemente en el marco del proyecto global. Sin embargo, todas las evaluaciones incluirían cultivos estándar y de referencia para poder permitir la comparación de los resultados.

Se sugirió que programas similares de tipo módulo se desarrollarían para otras áreas de investigación.

También se acordó que el mensaje importante que se envía a los mejoradores no es el enfoque en el mejoramiento para crear la resistencia en una sola especie de nematódolos, ya que probablemente más de una especie está presente en cualquier sitio, con el potencial de convertirse en plaga. También está claro que la importancia de una especie de nematodo particular depende del régimen y del cultivo en consideración. De este modo, la repetición del trabajo en varias regiones debe ser considerada como duplicación valiosa en vez de una simple repetición.

Se señaló la escasez de experiencia taxonómica a nivel mundial, especialmente en nematología de Musa, por lo que se considera estar más bien en un nivel de 'patógeno' estrictamente específico en el nivel de especies (con algunas excepciones). En relación con los estudios taxonómicos, se acordó que los costos de identificación de nematódolos, utilizando tanto enfoque clásico, como molecular, debe estar incluido habituamente dentro de los costos del proyecto para cualquier proyecto propuesto.

Se estima que actualmente puede haber de 15 a 20 fuentes identificadas de resistencia a R. similis, pero sólo dos se consideran confiables (el PJB y el Yangambi Km 5). Se acordó que se debe consultar a los mejoradores sobre la posibilidad de utilizar estas fuentes. Sin embargo, se acordó que el nuevo material debe ser verificado de manera regular a medida que se dispone de él, especialmente los diploides AA. Se reconoció la capacidad de otros enfoques de evaluación de la resistencia y tolerancia a los nematódolos, como son los estudios de las raíces, las...
propiaciones de las raíces y crotos, etc. Se comentó la popularidad de las Guías para la Evaluación de Nematodos en Musa, preparadas recientemente, así como su naturaleza "voluntaria", es decir, los grupos de trabajo estaban libres de seleccionar o aceptar los métodos de evaluación de acuerdo a sus circunstancias particulares. Se acordó que una serie común de cultivos estándares y de referencia (que provienen de las mismas infecciones del ITC) y un número mínimo de parámetros comunes se utilizarán en todas las evaluaciones para poder comparar los resultados. Los parámetros comunes que se utilizarán son aquellos relacionados con las poblaciones de nematodos y estado sanitario de las raíces o crotos a las mismas, es decir: la cantidad de nematodos por gramo y la extensión de la necrosis radial.

Se indicó que las actuales metodologías para el tamizado rápido son adecuadas y aceptables. Cualquier posibilidad de identificar erróneamente material promotor potencialmente fue considerada como un riesgo aceptable inherente a todos los programas de evaluación. También se indicó que al identificar mayor cantidad de fuentes de resistencia a nematodos dentro de Musa, inevitablemente surgirá la necesidad de realizar estudios más detallados de los mecanismos que se encuentran detrás de esta resistencia.

Se acordó que actualmente los enfoques biotecnológicos del mejoramiento de la resistencia a los nematodos tiene importancia a largo plazo. Se consideró que los estudios de los umbrales económicos e interacciones con otros patógenos y vectores que surgen de ello, están fuera del alcance de PROMUSA y que por el momento PROMUSA debe restringirse a los objetivos ya establecidos y no extenderse demasiado.

El papel de PROMUSA en nematología de Musa

La discusión se dirigió hacia el propósito, estructura, actividades y responsabilidades del grupo de trabajo en Nematología, su Presidente y la selección del grupo central.

Se indicó que los problemas propios de la nematología justificaban la existencia de un grupo de trabajo en Nematología dentro de PROMUSA. El perfil generalmente bajo otorgado a la nematología requiere de que el grupo de trabajo llame la atención hacia estas plagas de otras personas, especialmente de los mejoradores. Tanto la complejidad científica, como la amplia variabilidad geográfica de los nematodos exigen de un grupo de trabajo que tiene los vacíos en información y ayude al intercambio de información.

Finalmente, se señaló que un grupo de trabajo en Nematología formal puede ayudar a asegurar el financiamiento de los proyectos. Se desarrolló una discusión sobre la elección y responsabilidades del siguiente portavoz del grupo de trabajo en Nematología, y se eligió el Dr Jean-Louis Sarah (CIRAD).

Se acordó que el portavoz del grupo sería responsable de asegurar el intercambio de información entre los miembros del grupo de trabajo y coordinar las reuniones. El portavoz también deberá velar para que todas las publicaciones e información relevante producidas por los miembros del grupo de trabajo sean enviadas al INIBAP para una distribución más amplia. En adición, el portavoz deberá revisar sobre las oportunidades de proyectos a las partes interesadas y apoyarlas para que elaboran propuestas de colaboración. Se acordó que todos los miembros del grupo (incluyendo el portavoz) tratarían de identificar nuevos socios y fuentes de financiamiento para los proyectos de colaboración.

Se discutió la estructura del grupo central y se indicó, que debido a la amplia variabilidad geográfica y regional, tanto de los tipos de Musa cultivados, como de las plagas de nematodos, su alcance también debía ser extendido. Fueron identificados quince científicos e instituciones como miembros potenciales del grupo central.

Se identificó una serie de responsabilidades de los miembros del grupo central:
- Comprobación y presentación de sus respectivas actividades regionales,
- Participación activa en la preparación de proyectos,
- Actuación como enlace entre el Presidente y los miembros del grupo de trabajo en Nematología,
- Mantenimiento de los enlaces con otros investigadores en su región.

El grupo central se esforzaría en conseguir fondos para la participación de los miembros en las reuniones, dando la prioridad a aquellos que no tienen otras fuentes de financiamiento.

El grupo de trabajo en Nematología estableció para sí mismo los siguientes objetivos claros:
- Solicitar a los organizadores de la conferencia del año 2001, que se celebrará en la República de África del Sur, programar una sesión específica de Nematología de Musa en el marco de la conferencia. El grupo de trabajo se esforzaría en editar los trabajos presentados en esta sesión en una publicación especial, además de memorias habituales de la conferencia.
- Para esta conferencia el grupo de trabajo en Nematología preparará tres publicaciones especiales sobre los siguientes tópicos relacionados con la Nematología de Musa:
 - Una rúsea de la distribución de los nematodos de Musa a nivel mundial,
 - Una rúsea del trabajo realizado sobre las pérdidas de rendimiento causadas por los nematodos a Musa,
 - Una rúsea de estudios de la resistencia a nematodos en Musa.

El papel del grupo de Nematología de Musa dentro de PROMUSA

El grupo de trabajo en Nematología indica que es necesario establecer vínculos más estrictos con el grupo de Mejoramiento genético. Como parte de esta colaboración, se celebró una reunión especial con los miembros de este grupo. En esta reunión se discutieron técnicas de tamizado y el procedimiento para la estimación de resistencia y se consideró la capacidad de los procedimientos utilizados, actualmente, particularmente la inclusión de los cultivares estándar y de referencia. Se señaló que aunque la fuente del material para el tamizado precoces (cultivo de tejidos vs. retoros) puede dar resultados absolutos diferentes, la clasificación de los cultivares generalmente permanece a la misma (salvo unas pocas excepciones).

En adición, se destacó la continuidad tan limitada de fuentes de resistencia utilizadas. El grupo de Mejoramiento genético subrayó que, para los mejoradores, la resistencia a cualquier plaga o enfermedad no representaba un objetivo por sí mismo, sino que sus metas eran más bien el desarrollo de una planta mejorada, con independencia de cuales cualidades fueron mejoradas para lograrlo. Sin embargo, se señaló que los mejoradores actualmente consideran a los nematodos y virus como su principal guía en relación con la investigación estratégica.

Se acordó que el grupo de trabajo en Nematología compilará la información disponible sobre la resistencia y tolerancia del genoplasm de Musa a nematodos y la transmitirá al grupo de Mejoramiento genético lo más pronto posible.

Reunión del grupo de trabajo sobre Sigatoka de PROMUSA

Introducción

La propagación de la Sigatoka negra a nivel mundial desde su centro de origen en el área de Sudeste asiático y el Pacifico, hasta los continentes africano y americano fue el principal catalizador para que el esfuerzo internacional se dirigiera actualmente hacia el mejoramiento de bananos y plátanos.

Como resultado de este esfuerzo de mejoramiento intenso durante los últimos diez años en América Central, África y Sudamérica, fue desarrollada una serie de híbridos con resistencia a la Sigatoka negra, los cuales actualmente se encuentran en la etapa inicial de distribución a los agricultores. El patógeno, Mycosphaerella fijiensis, es un organismo altamente variable. Tiene una alta tasa de recombinación genética y, como resultado, una alta capacidad para el cambio. Ya existe evidencia de que este organismo roma la resistencia en variedades anteriormente resistentes, por ejemplo, en Paktu y T6 en Raratonga y Tonga. Un tópico clave, desde la perspectiva patológica, es la durabilidad de la resistencia a los patógenos Mycosphaerella fijiensis y...
Principales objetivos

Las principales prioridades desde la perspectiva patológica son las siguientes:

- **Desarrollar un entendimiento detallado de las estructuras de las poblaciones de los patógenos Mycosphaerella fijiensio y M. muscaria en diferentes áreas geográficas.**

 Un análisis de las poblaciones utilizando marcadores moleculares indicará la variabilidad inherente dentro de la población del patógeno. En adición, la inoculación de las cepas a través de una serie de genotipos hospederos será necesaria para suministrar información sobre la diversidad patógena dentro de la población, así como para comparar las interacciones huésped-patógeno entre los patógenos.

- **Desarrollar métodos para determinar la tasa de cambio de la estructura del patógeno a la resistencia seleccionada para nuevos genotipos de banano.**

- **Desarrollar un mejor entendimiento de los mecanismos y herencia de la resistencia en el hospedero, en particular, del control genético de la resistencia heredada cuantitativa y cualitativamente.**

En general, la resistencia cualitativa usualmente es acompañada por un alto nivel de resistencia asociado a un aumento de una Reacción Hipersensible (RH), mientras que la resistencia cuantitativa es asociada con la Resistencia Parcial (RP). La RH usualmente resulta de una interacción huésped-patógeno que afecta diferentes componentes de la enfermedad (por ejemplo, desarrollo lento, reducción de la esporulación, etc.).

- **Identificar fuentes de resistencia.** Estas incluirán la resistencia derivada del germoplasma natural y varias formas de resistencia transgénica.

- Los mejorares y patógenos consideran que los métodos de tamizado en campo, disponibles actualmente, son adecuados para el mejoramiento de la resistencia a la Sigatoka negra y amarilla. Por lo tanto, los métodos de tamizado en campo no representan una prioridad. Sin embargo, es necesario desarrollar procedimientos para el tamizado precoz para evaluar plantas transgénicas, etc. Los resultados obtenidos con la ayuda de estos métodos deben correlacionarse con los resultados obtenidos en el campo, hasta donde sea posible. Las áreas específicas de interacción y cooperación identificadas por los mejorares y biotecnólogos son las siguientes:

 - Asistir en la evaluación de las nuevas fuentes de resistencia, diversidad de patógenos y en la identificación de los mecanismos y durabilidad de la resistencia.
 - Desarrollar los métodos de tamizado precoz, especialmente para los programas de mejoramiento que utilizan biotecnología.

- **Determinar las relaciones entre la agresividad del patógeno y la producción de toxinas,**

- **Determinar un mejor entendimiento de las relaciones entre la producción de toxinas en el patógeno y la resistencia y susceptibilidad en el campo.**

Dos enfoques se toman en consideración:

- Un método convencional que compara la producción de toxinas de las cepas del patógeno del cual se conoce su diversidad en agresividad y un enfoque mutagénico donde se utilizan las cepas del hongo de las cuales se eliminará la producción de toxinas.

Aportes de la patología a la experimentación en el campo

- **Evaluaciones rutinarias de campo**

 Evaluaciones de la Sigatoka realizadas como parte de la evaluación regular de la progien procedente de los programas de mejoramiento. IITA, CORIBANA, CIRAD, EMBRAPA, QDPI, F4IA, NARO, CRBP.

Determinación de la estructura de la población del patógeno en las áreas donde se realizan los ensayos de campo.

Esta determinación tiene una gran importancia y es de especial relevancia para el programa IMP. La diversidad patógenica existente previamente en el área de pruebas y los cambios en la población afectarán el rigor de la evaluación del germoplasma. Las estructuras de las poblaciones, tanto de la Sigatoka negra como de la Sigatoka amarilla, deben ser evaluadas.

CIRAD, CRBP, Univ. de Frankfurt, HortResearch, QDPI.

Las evaluaciones de la diversidad utilizando el análisis con marcadores moleculares han demostrado la diversidad dentro y entre las poblaciones geográficas de Mycosphaerella. Ahora, esta información debe ser correlacionada con los estudios detallados de la variación en la virulencia y poder patógeno.

El germoplasma estará más amenazado por un poder patógeno de mayor magnitud en algunas localidades, por ejemplo, en el Sudeste asiático, que en otras.

Eficacia, durabilidad y manejo de la resistencia

En la etapa actual de mejoramiento de la resistencia, se sospecha que la resistencia tiene una base genética relativamente estrecha.

- **Es necesario realizar las siguientes actividades:**

 - Análisis de la resistencia (CIRAD-CRBP, IITA, F4IA).
 - ¿Qué genes están involucrados? ¿Cuántos?
Nuevas especies de hongos causan enfermedades de la mancha de la hoja. (CIRAD)

Una "nueva" enfermedad de la mancha de la hoja ha sido reportada desde la región de Sud Estonia de Asia. Los especímenes de las hojas fueron enviados al CIRAD desde las colecciones en Asia entre 1992 y 1995 para determinar si estas fueron afectadas por la Sigatoka negra o amarilla. El diagnóstico mostró que en las hojas se encontraba un hongo no registrado anteriormente asociado con las manchas. No hubo evidencias de los patógenos ni de la Sigatoka amarilla, ni de la Sigatoka negra en las colecciones. El análisis filogenético basado en la secuencia de los espaciadores transcritos internos (ITTS) del ADN ribosomal de diferentes patógenos de manchas foliares de los bananos, fue consistente con la definición de una nueva especie. También se desarrolló un método de diagnóstico molecular basado en la digestión de las regiones ITS amplificadas mediante PCR con varias enzimas de restricción para distinguir estos patógenos. La aplicación del método confirmó que el nuevo hongo aislado de todas las localidades donde se realizó el muestreo, pertenecía a la misma especie.

Se ha confirmado la presencia de este hongo en India, Sri Lanka, Taiwán, Vietnam, Malasia y Mauricio. La importancia de este patógeno tanto como la causa de la enfermedad en Asia, como una amenaza potencial para otras áreas, todavía tiene que ser determinada. Se debe otorgar la prioridad para determinar:

- Su distribución en la región,
- Su poder patógeno en los genotipos de Musa incluyendo a los genotipos resistentes a la Sigatoka amarilla y negra,
- La diversidad genética de las poblaciones del hongo en diferentes países donde este ha sido detectado.

<table>
<thead>
<tr>
<th>Institución</th>
<th>Personas clave</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRAD, Francia</td>
<td>Jean Carlier/Valérie Kany</td>
</tr>
<tr>
<td>CORBANA, Costa Rica</td>
<td>Ronald Vargas</td>
</tr>
</tbody>
</table>
| CREB, Camarín | Catherine Aladie, A. Mouffou-Pelour |}

Reunión del grupo de trabajo en Virología de PROMUSA

Asuntos administrativos y misceláneos

La reunión se celebró los días 7-9 de noviembre de 1998 en Doualá, Camerún. Glyn Harper fue designado portavoz del grupo. Roger Hull (Centro John Innes) continuará siendo el enlace para el grupo.

El grupo discutió la posibilidad de establecer una página Web para el grupo, conectada con el sitio Web de PROMUSA. La página contendrá información científica y será desarrollada por el Centro John Innes en colaboración con el servicio de Web de PROMUSA/INISAP.

El correo electrónico seguirá siendo el principal sistema para el intercambio de información entre los miembros del grupo (dirección de correo del grupo).

El grupo acordó que la frecuencia de sus reuniones no puede ser fija y depende de los deseos de los miembros del grupo y fondos disponibles.

El grupo recuerda que la producción y suministro de anticuerpos son limitados a los centros de indicación de virus (CIV) y para su uso en investigaciones. Con la actual tasa de utilización, existe una reserva para 20 años. Están disponibles los protocolos para la producción de anticuerpos.

Sesión 1: Potexvirus

John Thomas y Marie-Line Caruana presentaron cortas ponencias.

John Thomas informó que fueron aisladas partículas filamentosas (en espiral) a partir del Pisang Awak ABB, cultivar 'Ducasse'. Las partículas se encuentran en estado estable en CoC1 y el rendimiento es de arrededor de 0,1 mg/kg. El virus se degrada durante el almacenamiento. El antisuero polivalente reconoce una proteína de 31 kDa en el análisis de Western, aunque el análisis de secuencias predice 26 kDa.

La prueba DAS-ELISA es eficaz en los extractos de savia de las venas medias del tejido folliar. A menudo el virus se asocia con el virus del mosaico de las brácteas del banano (EBMV) y con el virus del rayado del banano (SSV). El tamaño del genoma del virus es aproximadamente 7.9 kb, lo que lo hace un potexvírus grande; por lo tanto, este virus podría ser un foeavírus, aunque su morfología es más parecida a la de un potexvírus.

La transmisión mecánica del virus del Ducasse no fue posible, aunque los potexvírus generalmente pueden ser transmitidos de esta manera. Hasta la fecha no fue posible la transmisión del virus via una planta hulesped intermedia, ni mediante insectos. Aunque
aparentemente visto en una sola infección, se hizo sugerencia de que se necesitaría una infección colateral, una transmisión colateral o algún otro componente auxiliar. Algunos minipreparados muestran bastones en espiral en las pruebas EM, pero en las pruebas ELISA son negativos con respecto al potex y BBrMV. Una prueba PCR fue específica para la cepa de Ducasse, la cual, usualmente para un potex, tenía una forma ligera con síntomas leves o sin ellos.

Marie-Line Caruana informó sobre la presencia sistémica de un potexvirus en una infección colateral con el potoviurus BBrMV en una planta afectada con la enfermedad del mosaico de las brácteas del banano. Contra este potexvirus se obtiene un cuerpo monoclonal específico que hace reacción con una proteína de 30KDa en borrones de Western. Combinado con el anti M'bouroukou potexvirus policional de Ben Lockhart, este cuerpo monoclonal permite una detección confiable del potex en los extractos de banano mediante pruebas ELISA.

Partículas filamentosas relacionadas serológicamente han sido identificadas solamente en varios cultivos de la colección de bananos en Guadalajara, especialmente en el genoma AAB, y en varias accesiones en el Centro de Tránsito de INIBAP. Ninguno o sólo sintomas visuales ligeros están asociados con estas particularidades, siendo las menos a un potexvirus. Los mismos tipos de partículas virales también se encuentran en una infección colateral con el virus del mosaico del papel (CMV) y con el BSV, relacionados con ataques y daños severos causados por el último. En el caso de la infección con el CMV, estos sintomas están relacionados con un síntoma de necrosis adicional. Estas distintas partículas, parecidas al potexvirus, se relacionan serológicamente. Solas, ellas se propagan únicamente de manera vegetativa y el hecho de que pueden encontrarse en una infección mixta facilitaría su diseminación de la misma manera que el CMV. BBrMV o BSV. Ben Lockhart informó que en América Central el había observado sitios concentraciones de potex en plátanos, especialmente, en infecciones mixtas con el BSV.

Estudios planados actualmente sobre el impacto del Potexvirus:
- Comparación del impacto del CMV vs. CMV – Potex (CIRAD Guadalajara)
- BSV + Potex (CIRPOCA Colombia/INIBAP)
- Estudios en Puerto Rico (Universidad de Minnesota)
- Papel del potexvirus en la infección colateral con potexvirus en BBrMV (CIRAD, Montpellier)
- Mecanismos de transmisión en la Infección colateral (CIRAD, Montpellier).

Sesión II: Virus del rayado del banano
John Thomas, Ben Lockhart, Glyn Harper y Hong-Ji Su actualizaban al grupo sobre los resultados obtenidos recientemente.

John Thomas informó que la secuencia del aislado del AAA-Red cv. “Red Dacco” fue la misma que la del aislado de Omne y que parecía haber una incidencia de muchas cepas distintas del BSV en Musa australiana. En plantaciones del cv. Williams con un buen manejo, el efecto del BSV parece ser solamente significativo sobre la longitud del ciclo de cultivo (demora de 1 semana) con una pérdida de 7 % en rendimiento por año. En los cultivos del primer ciclo se registra una pérdida similar. Sin embargo, en condiciones agrícolas pobres o bajo fluctuaciones de temperatura, el efecto sobre el rendimiento sería mayor.

Ben Lockhart presentó una investigación que muestra una secuencia del BSV integrada en una forma compleja y modificada en el cv. Obino L’Ewai. El objetivo presente consiste en desarrollar herramientas que podrían identificar los genotipos que contienen una secuencia activable del virus. En la revisión 1 (M. acuminata sp y AAA- Cavendish (cultivares Williams y Cavendish Enano) la activación no ha sido observada. Se realizaron pruebas PCR, que incluyen una parte del genoma de Musa, que rodea la secuencia del BSV, y del genoma integrado del BSV (comienzo de la secuencia del BSV). Después de obtener los resultados de estas investigaciones, se verá la posibilidad de identificar las variedades parentales no activables, que podrían ser utilizadas por los mejoradores. Los resultados de la prueba PCR sugieren un posible enlace de la secuencia activable del BSV con el genoma B de Musa.

Glyn Harper informó sobre el trabajo que se lleva a cabo en el Centro John Innes con la utilización de S-SAP e hibridación con fluorescencia in situ sobre el ADN y cromosomas del cultivar Obino L’Ewai (AAS). Las observaciones sugieren que la secuencia integrada del BSV, identificada en el Centro John Innes y Minneapolis, posiblemente esté concatenada incluyendo las inversiones, y puede ser activada por recombinación somática, y que la probabilidad de activación podría estar ligada al número de veces de repetición de la secuencia integrada. Esto sugiere un posible diagnóstico basado en PCR, similar al de Ben Lockhart para la activación baja o nula de las procecionales lineas parentales de Musa para los mejoradores.

Hong-Ji Su presentó su novedosa observación sobre que Pseudomonas comstockii (dos biotipos) han sido capaces de transmitir el BSV muy eficazmente desde las plantas, procedentes del cultivo de tejidos con una inoculación de tres semanas, antes de que los síntomas se hicieron visibles. La cepa del BSV utilizada mostró distintos efectos en el cultivar Cavendish, el cual tuvo síntomas más severos que los cultivares Lakatan y Mysore. Su análisis de la infección mixta mostró que los síntomas del BSV dominaron a los del CMV, mientras que el BSV dominó al BTVT en una etapa temprana, pero al progresar la infección, el BTVT gradualmente llegó a dominar al BSV.

Procedimientos para realizar la indicación:
Se desarrollaron discusiones sobre los procedimientos de indicación que se utilizan en los centros de indicación de virus. ¿Cuándo indicar el material vegetal? Inmediatamente después de su introducción en vitro o después de varios (¿cuántos?) ciclos de multiplicación? Se llegó a la conclusión de que la indicación podría ser más eficaz si se utilizan los iniciadores o sondas PCR tanto para detectar el ADN recortado, como el cápsido. El IC-PCR seguido por la prueba ELISA como una alternativa a la detección basada en gel para BSV + Pottedivirus (multiplex PCR-ELISA), podría constituir la primera etapa en la indicación (predisociación). Solo plantas negativas seguirían las siguientes etapas de indicación, John Thomas y Marie-Line Caruana, en colaboración con el FUSAGx, deberán establecer una propuesta para un procedimiento de indicación revisado. Se debe estimar su costo-eficacia.

Actividades de investigación planeadas
- Continuación de la caracterización de la secuencia activable (Centro John Innes y Universidad de Minnesota).
- Combinación con el trabajo en citogenética (CIRAD y el Centro John Innes).
- Erradicación, métodos de terminación y efecto de los factores del estrés (FUSAGx).
- Estudios actuales sobre el efecto del cultivar in vitro sobre la expresión del BSV se están llevando a cabo en FUSAGx + CORPOCA, FUSAGx + KUL + Centro John Innes y en CIRAD + CORBANA + Universidad de Costa Rica + Universidad de Minnestota.

Sesión III: Virus bunchy top del banano
Dough Becker, John Hu y Hong-Ji Su informaron sobre el estado de la resistencia al virus transferida a través de la transformación y los prospectos para el futuro.

Dough Becker describió la transformación del BTVT con el cultivar Cavendish con la replicasa del BTVT, replicasa defectiva, Rb y constructivos de proteína de reavivamiento para la resistencia al BTVT. Estas líneas actualmente están siendo investigadas en Australia. Adicionalmente, ensayos sobre la resistencia al BBrMV se están planeando también para India, o posiblemente para Filipinas.
John Hu informó sobre la detección del BBTV con un antisuero de proteína de revestimiento expresada que funciona bien con la ayuda de ELISA e IC-PCR para las cepas del BBTV hawaianas. Se produjeron plantas transgénicas para la replicasa del BBTV, mutantes de replicasa y construcciones del gen de proteína de revestimiento, una pequeña proporción (8%) de los cuales apareciéndamente resistente a la primera amenaza por el BBTV. Este resultado es muy alentador. Sin embargo, John señaló que se necesitará producir muchas plantas transgénicas para poder seleccionar plantas resistentes y con buenas características agronómicas.

Hong-Ji Su informó sobre la caracterización patológica y molecular de los síntomas del BBTV. Las cepas del BBTV que muestran severidad variable (severas, intermedias y ligeras o latentes), podrían ser transmitidas por *Pentalonia* y diferenciadas mediante PCR con diferentes pares de iniciadores. Los aislados latentes podrían ser detectados en otras Zingiberales.

Sesión IV: Otros virus

Virus del mosaico del pepino: El grupo estimó que el CMV no era relevante para ellos y no constituye prioridad, ya que representa más bien un problema de manejo a nivel de plantaciones.

Virus Dieback del banano: Jackie Hughes, ITA, ya ha informado anteriormente sobre esta partícula isométrica. Sin embargo, hasta ahora no se ha recibido información adicional.

Ben Lockhart informó sobre las observaciones de una partícula isométrica que difiere del BSV en Java Oriental.

Sesión V: Actividades prioritarias que deben realizarse en el marco de PROMUSA

El grupo hizo un resumen de actividades que deberían estar ligadas directamente con PROMUSA. Este resumen se presentó en una sesión plenaria bajo tres encabezados:

a) **Desarrollo de métodos confiables para la detección de virus**

b) **BSV**

Metas
- Prevenir la diseminación del germoplasma infectado con los virus,
- Definir y limitar la distribución geográfica,
- Mejorar los métodos de detección, por ejemplo, el IC-PCR para BSV + Potexvirus, y reflejarlos en los procedimientos para la indización de los virus.

Futuro
- Establecer que la cepa del BSV de Orne es una cepa de primera importancia presente como infección episcopal en germoplasma ya que la misma tiene una incidencia sobre los métodos de detección (QDPI/CIRAD).
- Desarrollar el IC-PCR para el BSV (basado en la cepa de Orne) + Potex (FUSAGx/QDPI).
- PCR para diferenciar secuencias integradas y epissomales del BSV para detectar síntomas ligeros o nulos en las plantas (FUSAGx/JIC).
- Revisar los procedimientos de detección para los centros de indización de virus (QDPI/CIRAD).

c) Resistencia de los virus transgénicos

Metas
- Eliminar virus particulares como una limitación a la producción.

Perspectivas
- Plantas transgénicas que muestren promesa inicial para el BBTV, muchas otras plantas listas para ser confrontadas con el BBTV y BBMV.

Criterios para la participación en el grupo central de Virología
El grupo discutió los criterios para la participación en el grupo central de Virología, que fueron identificados como sigue:
- Investigación en curso sobre los virus del banano,
- Al menos un científico que trabaje en virología de Musa a tiempo completo o con aptitudes especiales para el programa (representantes de los centros de indización de virus, por ejemplo).
- La investigación en curso debe estar en el marco de las prioridades de PROMUSA.

Con base en estos criterios, la composición del grupo central en Virología fue establecida como sigue:
- John Hu, Universidad de Hawaií
- Charles Michel, FUSAGx, Bélgica
- John Thomas, QDPI, Australia
- Hong-Ji Su, National Taiwan University
- Emile Frias, INIBAP, Francia
- Gerard Pietersen, ARC – Plant Protection Research Institute, África del Sur
- Marie-Line Caruana, CIRAD, Guadalajara
- Glynn Harper, Roger Hull, Centro John Innes, RU
- Ben Lockhart, Universidad de Minnesota, EE.UU
- Douglas Becker, QUT, Australia
- Jackie Hughes, ITA, Nigeria
- Jean-Pierre Hory, INIBAP, Francia (observador).

Los participantes de PROMUSA visitaron la colección de bananera del CRIP-Muyombo.